a2 United States Patent

US006314524B1

10y Patent No.: US 6,314,524 B1

Cave @#5) Date of Patent: Nov. 6, 2001
(59 REPETITIVE INTERVAL TIMING Primary Examiner—Dennis M. Butler
(74) Attorney, Agent, or Firm—Fulbright & Jaworski LLP
(75) TInventor: Ellis K. Cave, Plano, TX (US)
57 ABSTRACT
(73) Assignee: Intervoice Limited Partnership, Reno,)) o) o
NV (US) An interval timer for timing multiple repetitive timing
intervals. A single large clock register increments ticks of a
(*) Notice: Subject to any disclaimer, the term of this high-speed clock. Successive previously-stored timing val-
patent is extended or adjusted under 35 ues are loaded into a single compare register which is
U.S.C. 154(b) by 0 days. preferably of equivalent length to the clock register. A
comparator monitors the clock register’s current value and
(21) Appl. No.: 09/272,631 compares it with the timing value currently loaded in the
. compare register. As the clock register’s value reaches the
(22) Filed Mar. 18, 1999 current timing value in the compare register, an alert signal
(51) Int. CL7 oo GO6F 1/04 is generated and sent out to activate a particular timed
(52) 713/500; 713/502; 377/52 operation identified by an event ID (“EID”) associated with
(58) Field of Searchccccvevvcnunnne 713/500, 502, the timing value in the compare register. The current timing
713/600; 377/39, 52 value in the compare register is then discarded, and the next
timing value in sequence is retrieved into the compare
(56) References Cited register. A repeat flag is carried with each timing value and
associated EID. If the flag is set, the system recognizes the
U.S. PATENT DOCUMENTS corresponding timing value as a repetitive interval timing
4,939,755 * 7/1990 Akita et al. wooorrovocrsrocrrsre 37730 Vvalue. Upon recognizing the repeat flag as set, the inventive
5:086:280 * 2/1992 Ohmura et al. ... 327/170 mechanism refers to a separate repeat value lookup table
5,631,853 * 5/1997 Miller et al. 702/176 indexed by EID. The mechanism retrieves the repeat value
5,680,593 * 10/1997 Hiiragizawa 713/500 associated with the EID of the timing value just reached,
5,748,949 * 5/1998 Iohnston 713/502 adds this repeat value to the timing value just reached, and
6,002,737 * 12/1999 Devanagundy et al. 377/20 then inserts the resulting sum into the stack as a new timing
6,125,404 * 9/2000 Vaglica et al. 709/400 value associated with the repeated EID.
6,232,808 * 5/2001 Cave ...c.cceeeveverererenrineenene 327/176

* cited by examiner

32 Claims, 3 Drawing Sheets

207,,{

RF, {f308n

209,‘/{ £, |

2ho~ Vi 20915 AE010| RF1g 730810
2079\ g 209 1 ElDg | RFg |~ 308g
2075~ Ny 2095 1 EIDg | RFg 13088
2077 N 09, } €07 | ®F7 INSERT 305
2076~ v EIDg | RF 3%
6 209g_7"V6 6 1308 vy 4RY,
20751 V5 20951 EI5 | RF5 1
5 5 3085 03
207441 Vg 20941 EIDg | RFy I 3084
20731 Vs 20057505 | Rf3 1308, m
2075 ™, 209 1 EDy | RFy 308, e
20741 Vi 209, 101 | Bt | 50g, R 1e (6072
o5 RVyq | EIDq
RVqp [EDyy
v RV
LT vy | ey
106 304 RVg | EIDg
Rvy | €
S 4 4
REGISTER Rvg | Eidg
Rvy | EIDy
™y

204f|

|E[D1 | RF |

301 I 302

203-]_couparaTor |

/ Va
l—-{ RF TEST J——{ Rv Lookur |
f

U.S. Patent

Nov. 6, 2001 Sheet 1 of 3

US 6,314,524 B1

101\@ FIC. 1
(PRIOR ART)
1031 1, L r——“P—i-——-:
1039~ . S —
F OX
103 T L seeer L Ry
3~} 64y | - MUX — “l
1
Ol | T 2 [
[) I
1035~ 2056y |« 105" ¢ L-——-=---d
: Ry
103 1 102 —
S——
2075~] Vn EID, 4209,
207g-[Vg EIDg 42098
2077 v, EID; 42097
2076 Vg EIDg 42096
2075 Vs EIDg 4-2095
20741 V4 ElD4 T~209,
2073t V3 ED3 T-2093
20791 v, EID, T~209,
2071 A Wy ED4 '\2091
3
/
2041 COMPARE REGISTER Tv¢ | EID4
!
203" COMP,iRATOR
2021 CLOCK REGISTER 1-2-3-4-ETC.

201/@5 FIG. 2

U.S. Patent Nov. 6, 2001 Sheet 2 of 3 US 6,314,524 B1
7 Vo 209, EID | RFy 73080
20710 ‘ : 308
. ~ V10 2091 1ED10| RF1g 7727510 FIG. 8
N N9 2094_1 EIDg | RFg 3089
2078_ Vg 2095 1 EIDg | RFg }~308g
207
2077'_ Vy 2097 A EID7 | RFy \43_13_;?]-— 3/05
6~ v L EIDg | RFg -
6 209¢- 6 6 N- 3086 vy +RV,| EIDy | RF,
20751 N5 2095_1 EID5 | Rfg 3085 1 03
2074 V4 209,_1 EIDg | Ry T~ 308, hd
207314 V3 20951 EID3 | RF3 13083 RV, | EID,
2075 1 V2 2097102 | RF2 1\ 308, °
i v LEIDy | RFy -
2074 1/‘ 2?91/ V] T 1308, RVi4 | EIDq4
e RVqy |EIDq
RV12 EID12
v RV
L(T)—H rvy | €D,
N RV4 | EIDy
| BAsE
REGISTER RVg | EIDg
J
v } EIDy | RF e |
e 1 1 1]
204 . ‘ 301 302
L / ‘7
_1{ comparaTOR RF TEST |«— RV LOOKUP
203 ;
) 4

2021

CLOCK REGISTER

201@

U.S. Patent Nov. 6, 2001 Sheet 3 of 3 US 6,314,524 B1
402 404 412
N N /
START NEW - [INSERT INTO RV
REPETITIVE. INTERVAL [V NEW | EIDNEW =1 aokup TaBLE 303
406 TVNEW EIDNEW RFNEW . INSERT [NTO

FIC. 4 STACK 205

| o o4

909 | CLOCK REGISTER 408 | SET FLAG K 410

RV LOOKUP

CONTROLLER

(
502

(
510

US 6,314,524 B1

1
REPETITIVE INTERVAL TIMING

BACKGROUND

Timing mechanisms in computers of the current art typi-
cally conform generally to the architecture and topology
depicted in FIG. 1. A brief overview of the operation of the
timing mechanism in FIG. 1 is given below. For further
reference, a more complete description is provided in
co-filed U.S. Pat. No. 6,232,808 B1, Ellis K. Cave,
“IRREGULAR INTERVAL TIMING.”

High-speed clock 101 (typically generating ticks in
microseconds or nanoseconds) feeds prescaler 102, whose
ports 103 scale down increments of raw clock ticks to
increasingly coarser intervals. In the example of FIG. 1,
successive ports 103, through 103, scale down increments of
raw clock ticks to selected intervals increasing by some
power of two (in the case of FIG. 1, intervals of 27, or 8).
Timing operations are then enabled by placing values in
registers R. The actual values represent numbers from which
the mechanism counts down to zero. When zero is reached
from a desired value, a processor interrupt is generated.

Select mux 104 selects the prescaler port 103 whose
interval will dictate the rate at which raw counting takes
place in register R. The time until processor interrupt for a
particular selected value in R is thus the time to count down
to zero from that value in R at the interval corresponding to
the particular prescaler port 103 selected by mux 104.
Recurring values (to generate a series of equidistant timed
events) are optionally placed into registers R via phantom
registers P. Instead of counting down to zero each time from
a separate new value, a recurring value is loaded once into
the phantom register P corresponding to R. Then, as R
reaches zero, a processor interrupt occurs, whereupon phan-
tom register P re-initializes R for a further recurring count-
ing cycle.

When additional length is required to count down from a
number exceeding the capacity of original register R, the
prior art mechanism has the optional capability to concat-
enate registers R; and R,. This situation typically arises
when it is desired to time a fairly long event at a relatively
fine counting interval on prescaler 102, where the value to
be counted from exceeds the capacity of register R, . In such
cases, the prior art as illustrated in FIG. 1 may optionally
provide selector 105, where register R, can be temporarily
concatenated with register R;. When not required, selector
105 re-establishes register R,’s connection to mux 104 so
that R, can perform timing operations independently.

Current art timing mechanisms such as the one illustrated
in FIG. 1 are primarily useful when the system requires the
same interval or multiples of that interval to be timed
repeatedly. For example, the mechanism of FIG. 1 lends
itself to timing the system’s “heartbeat” interval. The heart-
beat value to be repeated is loaded into phantom register P
just once, at which point the mechanism times sequential
intervals corresponding to that value.

As discussed in detail in co-filed U.S. Pat. No. 6,232,808
B1, current art timing mechanisms present several problems
if it is desired to time multiple irregular intervals concur-
rently. U.S. Pat. No. 6,232,808 B1 teaches an elegant
solution which allows multiple irregular timing intervals to
be timed concurrently with a high degree of chronometric
accuracy over prolonged periods of interval time. A brief
overview of the operation of the irregular interval timing
mechanism of U.S. Pat. No. 6,232,808 B1 is given below.

FIG. 2 is a block diagram of a multiple irregular interval
timer as disclosed in U.S. Pat. No. 6,232,808 B1. Clock

10

15

20

25

30

35

40

45

50

55

60

65

2

register 202 increments at the raw tick rate of high speed
clock 201. Compare register 204 is a register preferably
having a length equivalent to that of clock register 202.
Associated with compare register 204 is stack 205, which
may comprise a series of hardware registers 207, through
207, for holding timing values TV, through TV,, and
including register spaces 209, through 209, reserved for a
corresponding event identification EID, through EID,,.

As described in application Ser. No. (Attorney Docket
No. P086US), timing operations begin as clock register 202
counts upward at the clock rate of clock 201. Comparator
203 continuously compares the current value of clock reg-
ister 202 with the current timing value loaded into compare
register 204. When clock register 202 reaches the value in
compare register 204, a processor interrupt is generated and
the system acts according to the event identification (EID)
associated with the timing value currently loaded in compare
register 204 (processor interrupt not illustrated).

Stack 205 then “rolls down,” making the next register
207°s timing value current in compare register 204.
Meanwhile, counting in clock register 202 and comparison
between clock register 202 and compare register 204 con-
tinues substantially continuously and uninterrupted. When
clock register 202 reaches the new timing value currently
loaded into compare register 204, a processor interrupt is
again generated to trigger system action according to the
corresponding EID for the timing value just reached
(processor interrupt again not illustrated). Stack 205 then
again “rolls down,” making the next register 207’s timing
value current in compare register 204. The irregular interval
timing mechanism continues until all intervals represented
by timing values TV, through TV, as stored in stack 205
have been timed, and their corresponding EIDs have been
activated.

SUMMARY OF THE INVENTION

The system and method disclosed in U.S. Pat. No. 6,232,
808 B1 provide a simple and comprehensive solution for
timing multiple irregular intervals. Computer systems and
other electronic devices, however, often require the timing
of repetitive intervals in addition to irregular timing inter-
vals. For example, a repetitive interval timer is useful for
generating interrupts to update a computer screen every
fraction of a second, or for allocating time slices to appli-
cations in a multitasking environment. As with irregular
timing intervals, it may be desirable to time multiple repeti-
tive intervals concurrently with a high degree of chrono-
metric accuracy over prolonged periods of interval time.

If it is desired to time such repetitive intervals using the
irregular interval timer as disclosed in U.S. Pat. No. 6,232,
808 B1, a new timing value TV and the event ID must be
re-inserted into the stack after each interrupt. Whether
performed by microcode, the operating system or a software
application, repeating this operation every cycle generates
unnecessary processing overhead. In addition, if the repeti-
tive interval is a relatively short one, requiring the requesting
program code to regenerate the timing value each cycle
could use up a significant portion of the time available to the
program code in the cycle that would be better utilized
performing other functions.

There is therefore a need for enhancing the irregular
interval timing system and method disclosed in U.S. Pat. No.
6,232,808 B1 so that concurrent multiple repetitive timing
intervals may be measured in addition to irregular timing
intervals, and still require comparatively little hardware or
processor overhead in deployment. Ideally, the amount of

US 6,314,524 B1

3

hardware available should not be a practical limitation on
the number of events that may be timed concurrently. Also,
there should not be a hardware-imposed practical limitation
on the length of a time period that may be timed at a high
level of resolution.

These and other objects, features and technical advan-
tages are achieved by the present invention, which enables
the timing of multiple repetitive intervals by generally
adding a flag bit, a data structure, a summer, and some
control logic to the multiple irregular interval timer dis-
closed in application Ser. No. (Attorney Docket No.
PO86US).

According to the present invention, a repeat flag may be
carried with each timing value and associated EID. If the
flag is set, the system recognizes the corresponding timing
value as a repetitive interval timing value. During operation
of the timer, upon recognizing the repeat flag as set, the
inventive mechanism refers to a separate repeat value
lookup table indexed by EID. The mechanism retrieves the
repeat value associated with the EID of the timing value just
reached, adds this repeat value to the timing value, and then
inserts the resulting sum into the stack as a new timing value
associated with the repeated EID. When this new timing
value later rolls down the stack to the compare register, the
EID will be activated again at the appropriate time, and the
repeat flag will trigger the insertion of another new timing
value into the stack, and so on. Timing of the repetitive
interval may be turned off, for example, by resetting the
repeat flag, so that new timing values are no longer inserted
into the stack.

It is therefore a technical advantage of the present inven-
tion to generally allow timing of multiple repetitive intervals
concurrently and at a high resolution without having to set
multiple individual timers each corresponding to a separate
interval. It is a further technical advantage of the present
invention to generally allow timing multiple repetitive inter-
vals and multiple irregular intervals concurrently and at a
high resolution without having to set multiple individual
timers each corresponding to a separate interval. A single
counter may concurrently time all intervals regardless of
whether each interval is synchronous or asynchronous to
other intervals. Timing is not tied to a heartbeat interval, and
a prescaler is not required. All intervals may be timed with
the same resolution, preferably the raw clock tick interval
(unless a prescaler is deliberately deployed). Thus, even
timed intervals near the end of the clock register’s capacity
can be timed with the same resolution as comparatively
short intervals.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the
subject of the claims of the invention. It should be appre-
ciated by those skilled in the art that the conception and the
specific embodiment disclosed may be readily utilized as a
basis for modifying or designing other structures for carry-
ing out the same purposes of the present invention. It should
also be realized by those skilled in the art that such equiva-
lent constructions do not depart from the spirit and scope of
the invention as set forth in the appended claims.

BRIEF DESCRIPTION OF THE DRAWING

For a more complete understanding of the present
invention, and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with
the accompanying drawing, in which:

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 is a block diagram of an exemplary multi-event
timing mechanism as typically found in systems of the
current art;

FIG. 2 is a block diagram of an irregular interval timing
mechanism;

FIG. 3 is a block diagram of a timing mechanism capable
of timing multiple repetitive timing intervals in addition to
irregular timing intervals;

FIG. 4 is a flow diagram for initializing a repetitive timing
interval in the timing mechanism of FIG. 3; and

FIG. 5 is a block diagram of the repeat value lookup table
deployed using non-linear memory storage techniques.

DETAILED DESCRIPTION

FIG. 3 illustrates the inventive repetitive interval timer in
block diagram form according to a first embodiment imple-
mented primarily in hardware. It will be appreciated that
many of the components of FIG. 3 are similar to the
components of the irregular interval timer illustrated in FIG.
2, with the addition of a flag bit, data structure, summer, and
some control logic. Analogous to the operation of the timer
in FIG. 2, clock register 202 increments at the raw tick rate
of high speed clock 201. Compare register 204 is a register
preferably having equivalent length to clock register 202.
Comparator 203 compares the value loaded into compare
register 204 with the value of clock register 202 and gen-
erates alert signals (e.g., processor interrupts or some other
reason for setting timing values) at the appropriate times.
Stack 205 provides new timing values to compare register
204. As an enhancement to the mechanism of FIG. 2, a
repeat flag is associated with each timing value TV in
addition to the associated EID. As shown in FIG. 3, repeat
flags RF, 308, to RF, 308, are associated with each existing
timing value TV, 207, to TV,, 207, in stack 205 and
compare register 204.

A repetitive interval generator (comprising elements
301-306 in FIG. 3) preferably manages repetitive intervals
by monitoring the repeat flags, generating regularly-spaced
timing values and then inserting the values into the correct
places in the chronological order of existing timing values in
the stack. The condition of a specific flag RF indicates to the
generator whether the associated timing value is a single
irregular interval timing value or is part of a repetitive
interval timing sequence.

Upon expiration of a timing interval, RF test module 301
tests the condition of flag RF, associated with the current
timing value TV, loaded into compare register 204. If the
flag is not set, then the timing value is a single irregular
timing value. The repetitive interval generator is not
enabled, and the current timing value is discarded by the
timer after an interrupt is activated for the associated EID.
If, however, RF test module 301 detects that flag RF,
associated with current timing value TV is set, then RF test
module 301 triggers repeat value (RV) lookup module 402
to search for a repeat value in RV lookup table 303. The EID
of the current timing value may be used as an index key for
the search. RV lookup module 301 retrieves repeat value
RV, associated with EID, of current timing value TV, and
sends RV, to summer 304.

Receipt by summer 304 of RV, triggers summer 304 to
add RV, to current timing value TV,. While current timing
value TV, is shown as originating from compare register
204, a value could also be read from clock register 202 at the
time the two registers are equal. Preferably, TV, is tempo-
rarily stored in base register 306 in order for a new timing
value to be loaded into compare register 204 immediately

US 6,314,524 B1

5

after the interrupt for EID, is triggered, so as to not interfere
with the operation of the compare register. Alternatively,
TV, may be read directly from compare register 204. A new
timing value TV, 4RV is created and associated with EID,
and RF, from current timing value TV,. This updated
combined “record” is illustrated as item 305 in FIG. 3.

The timing mechanism then treats the new “record” 305
as an incoming new timing value, inserting it into stack 205
in its correct place in chronological order. As this new record
305 rolls down stack 205 to become the current timing
value, RF test module 301 identifies the set condition of flag
RF, again, and initializes further repeat value processing. In
this way, repetitive interval timing for a particular EID is
enabled.

To disable repetitive interval timing for a particular EID,
the repeat flag may be reset so that RF test module 301 no
longer triggers RF lookup module 302 to generate new
timing values for insertion into stack 205. The RV/EID entry
in lookup table 303 could either remain in table 303 for
future use, or be removed from table 303 to keep table 303
as small as possible. Alternatively, repetitive interval timing
for a particular EID could be disabled by removing the
associated RV/EID entry from lookup table 303. When the
associated “record” rolls down the stack, RF test module 301
detects that the repeat flag is set, but RV lookup module 302
will not find the associated EID in lookup table 303. When
this occurs, RF test module 301 determines that another
interval is not needed, so RF test module 301 does not insert
a new “record” into stack 205.

Referring now to FIG. 4, there is shown a flow diagram
for initializing a repetitive timing interval for the timing
mechanism of FIG. 3. A source (e.g., program, code,
application, task, module or operating system) requesting a
repetitive timing interrupt provides a repeat value RV, zv»
representing the period of the repetitive interval, at step 402
in FIG. 4. The timing mechanism comprises repetitive
interval initialization logic which initializes a repetitive
interval to start immediately after receiving and processing
the request. Alternatively, the source may also provide an
absolute starting time at which the first timing interval is to
be started. EID,,y is associated with RV, at step 404,
and is either provided by the source or created by the timing
mechanism. The value of clock register 202 is read and
added to RV .y, at summer 406, and record 408 is generated
consisting of initial numerical value TV gy, EID gy, and
RF, ;v Summer 406 and summer 304 may share the same
hardware or program code, or may be two separate sum-
mers. Because record 408 represents a repetitive timing
interval, RF,.y is set at step 410. The timing mechanism
then treats the new “record” 408 as an incoming new timing
value, inserting it into stack 205 in its correct place in
chronological order at step 414. RV, and EIDy, are
inserted into RV lookup table 303 at step 412. Processing
then proceeds as described above with respect to FIG. 3. As
this new record 408 rolls down stack 205 to become the
current timing value, RF test module 301 identifies the set
condition of flag RF,, .y, and initializes further repeat value
processing.

Most of the discussion in application Ser. No. (Attorney
Docket No. PO86US) with respect to the preferred embodi-
ments for stack 205 also applies to RV lookup table 303
shown in FIG. 3 of the present application. In a first
embodiment of the invention as illustrated in FIG. 3, RV
lookup table 303 comprises a series of hardware registers
each including register space reserved for an EID value and
a corresponding RV value. Preferably, RV/EID entries in the
registers are stored in order of increasing repeat value.

10

15

20

25

30

35

40

45

50

55

60

65

6

RV/EID entries may be initially loaded having previously
been sorted in increasing order, or alternatively a controller
(not illustrated) may load them into the correct register
without prior sorting. Such a controller simply receives a
new RV/EID pair, and starting at either the top or bottom of
RV lookup table 303 or, for example, using a binary search,
compares the repeat value with repeat values already loaded
until the correct place in the table is found. Entries in
registers above the correct place are each then shifted up one
place in RV lookup table 303 to make room for the new
entry. Preferably, insertion, searching and removal of entries
are accomplished by a simple hardware controller without
software. Alternatively, firmware or software may be used to
accomplish these functions.

Entries in RV lookup table 303 are preferably stored in
order of increasing repeat value to aid in searching for the
proper entry upon occurrence of an interrupt. Because
smaller repeat values will necessarily be accessed more
often than larger repeat values, it is advantageous to search
the table from the smallest repeat value first. In this way
there is less likelihood that the time spent searching for a
repeat value is longer than the repetitive interval itself. As
shown in FIG. 3, for example, RV, is smaller than RVg,
which in turn is smaller than RV, and so on. A search for
an entry by RV lookup module 302 starts with EID, asso-
ciated with RV, because this is the most likely specific event
to have occurred. If EID, does not match the EID value from
the compare register, then RV lookup module 302 continues
to test progressively larger repeat values in RV lookup table
303.

Alternatively, entries in RV lookup table 303 are not
required to be in any order, and may simply be stored as they
are received in an available slot, as long as all of the entries
can be searched so as to provide a new repetitive timing
interval to stack 205 before expiration of the shortest repeti-
tive interval. As another alternative, entries may be stored in
RV lookup table based upon EID value. Then a binary search
could be used to quickly find the entry which matches the
EID from compare register 204.

A second embodiment of the present invention may be
appreciated with further reference to FIG. 3, by visualizing
RV lookup table 303 as a configurable and extensible
memory region. In such an embodiment, the placement and
sorting of RV/EID entries in stack 303 embodied as memory
may be enabled either hardware or software or a combina-
tion thereof The advantage of using a configurable and
extensible memory region for RV lookup table 303 in this
second embodiment is that the size and height of table 303
is limited only by the amount of available memory. This is
in contrast to the first embodiment described earlier, in
which table 303 comprises hardware registers, placing inevi-
table physical limitations on its size and height. The com-
parative disadvantage of the second embodiment, having a
memory stack, over the first embodiment, having a hardware
stack, is that processing overhead may be higher with a
memory stack if software control is used to a substantial
degree. Different applications of the inventive mechanism
will dictate the most advantageous selection between these
first and second embodiments.

If frequent insertion and removal of repeat values are
anticipated, it may also be advantageous to use a third
embodiment of the present invention, as illustrated in FIG.
5. In this third embodiment, non-linear storage techniques
(such as typically used to implement a “linked list”) allow
the present invention to be enabled without any “stack”-like
memory configuration at all. Instead, all timing values as
randomly stored in main memory are linked by a series of

US 6,314,524 B1

7

“next” pointers, each stored with the corresponding repeat
value and associated EID in main memory. As a result,
insertion of repeat values into RV lookup table requires very
little, if any, mass movement of data within memory. The
trade-off of using the embodiment as shown in FIG. § is that
the processing overhead incurred in FIG. 5 is generally
higher than in other embodiments described herein. In
particular, in contrast to embodiments using stacks, efficient
binary sorting algorithms are generally unavailable to locate
the points in the linked list at which new repeat values
should be inserted to maintain chronological order. This
additional sorting processing overhead may be worth
absorbing, however, if frequent insertion and removal of
new repeat values into the table are anticipated.

With reference to FIG. 5§, main memory 501 includes
RV/EID entries 520,-520,, stored randomly therein. It
should be noted that while seven entries are identified in
main memory 501 in FIG. §, the embodiment of the inven-
tion is not limited in this regard.

In FIG. 5, each RV/EID entry 520,-520,, also has a
corresponding next pointer value NP,—NP, associated with
it in main memory. The value of NP for a particular RV/EID
entry 520 points to the address in main memory where the
next timing RV/EID in sequence is stored. Next pointer
values NP for entries 520 are set by controller 510 when
entries 520 are stored in main memory, once controller 510
has sorted entries 520,-520,, in order of, preferably, increas-
ing repeat value. It will be seen in FIG. § that in this
embodiment, RV lookup module 502 may search entries
520,-520,, in sequence by next pointer value, and then
extract the appropriate repeat value once a matching EID
value is found.

In FIG. 5, when a new RV/EID entry arrives to be inserted
into the RV lookup table, it may be stored randomly in
memory. Controller 510 then simply scans down the table to
determine the correct place in the table for the new entry, and
then adjusts or sets next pointer values accordingly. The
original entry in sequence immediately before the new entry
has its next pointer value adjusted to point to the memory
location of the new entry. The next pointer value of the new
entry is set to point to the memory location of the original
entry in sequence immediately after the new entry.

As noted, while the embodiment of FIG. 5 facilitates
insertion and removal of new entries, the attendant addi-
tional sorting processor overhead may make the embodi-
ment of FIG. 5 most advantageous only when many inser-
tions and removals of new repeat values are anticipated. In
addition, it will be appreciated that there are many types of
linked list data structures known in the art which could be
substituted for the one illustrated in FIG. 5, all of which are
within the scope of the present invention. The techniques for
searching, inserting and removing values in a stack, list or
hash table are well established in the prior art, and all such
techniques are considered to be within the scope of the
present invention.

The foregoing description has described various embodi-
ments with reference to particular exemplary hardware or
software deployments. It will be appreciated, however, that
the invention is not limited in this regard, and that many
alternative hardware or software deployments of the various
aspects of the invention are possible with equivalent
enabling effect. For example, if desired, the invention may
be embodied entirely in hardware, firmware, software, or a
combination thereof. Although the clock speed of the inven-
tion deployed entirely in software would likely be much
slower than in hardware (at best, perhaps a millisecond tick

10

15

20

25

30

35

40

50

55

60

65

8

rate under current art capability), the invention would still be
enabling on selected applications operable with such a
coarse timing resolution.

As another example, the present invention may be embod-
ied using discrete components, or on an integrated circuit,
such as a complementary metal-oxide silicon (“CMOS”)
design, either as an independent Application Specific Inte-
grated Circuit (“ASIC”) chip, or as part of a larger piece of
hardware. In addition, the present invention may be used in
any application in which multiple repetitive intervals are
timed, for example, a stand alone computer (e.g., in a
personal computer) or in an embedded computer system
(e.g., in a toy that gradually learns over an extended period
of time).

Although the present invention and its advantages have
been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention
as defined by the appended claims.

What is claimed is:

1. A method for timing multiple repetitive time intervals
comprising the steps of:

(a) periodically receiving numerical timing values, each

of the values representing a repetitive time interval as
a point in time from a datum on a linear scale;

(b) maintaining the numerical timing values in ascending
numerical order, said order including a current low
value;

(¢) continuously incrementing a clock register;

(d) continuously comparing the clock register with the
current low value;

(e) generating an alert signal for an event ID associated
with said current low value when the clock register
number is equal to or greater than the current low value;

(f) testing a repeat flag associated with said alert signal;

(g) if said repeat flag is set, adding a repeat value
associated with said alert signal to said current low
value to generate a new numerical value for insertion
into said numerical order; and

(h) discarding the current low value in favor of the current
next lowest value in said order;

(i) repeating steps (d), (e), (f), (g) and (h) for as long as
said order continues to contain numerical values.

2. The method of claim 1, wherein step (¢) comprises the

steps:

(D) starting the clock register at a value of 0;

(ID) incrementing the clock register by one unit upon
receiving a tick;

(IIT) repeating step (II) until the clock register obtains a
maximum value; and

(IV) resetting the clock register to a value of 0 upon
receiving the next tick.

3. The method of claim 1, in which step (b) comprises the

step:

() adjusting the numerical values in the ascending
numerical order to allow for a received numerical value
that will not be obtained until the clock register resets.

4. The method of claim 1, in which step (b) comprises:

() checking the received numerical value against the
current low value, wherein if the received numerical
value is numerically smaller than the current low value
interchanging the current low value and the received
numerical value, making the current low value the
received numerical value and making the received
numerical value the current low value.

US 6,314,524 B1

9

5. The method of claim 1, wherein step (b) comprises the
steps of:

(D) adding the received numerical value to the end of the

ascending numerical order; and

(II) sequencing the ascending numerical order, the
sequencing step comprises:

(A) comparing the received numerical value with a
value ahead of the received numerical value in the
ascending numerical order, wherein if the value
ahead of the received numerical value is larger than
the received numerical value reordering the two
numbers;

(B) repeating step (A) until the value ahead of the
received numerical value is equal to or less than the
received numerical value.

6. The method of claim 1 further comprising associating
said event ID and said repeat flag with said new numerical
value before said insertion into said numerical order.

7. The method of claim 1 further comprising initializing
a new repetitive interval, said initializing comprising:

(D) receiving a request for timing said new repetitive
interval, said request providing a new repeat value
representing the period of the new repetitive interval;

(1) adding said repeat value to a current clock register
value to generate an initial numerical value;

(IIT) setting a new repeat flag and associating said new
repeat flag and a new event ID with said initial numeri-
cal value;

(IV) inserting said initial numerical value into said
numerical order;

(V) inserting said new repeat value and said associated
new event ID in a repeat value lookup table.

8. The method of claim 1, further comprising temporarily
storing said current low value in a base register at least until
said new numerical value is generated.

9. The method of claim 1, said step (g) further comprising
retrieving said repeat value from a repeat value lookup table,
said lookup table containing multiple repeat values and
associated event IDs as entries in the lookup table.

10. The method of claim 9, said retrieving further com-
prising searching said lookup table by event ID value to find
an entry that corresponds to said event ID associated with
said current low value.

11. The method of claim 9, wherein said entries are stored
in order of increasing repeat value.

12. The method of claim 11, said retrieving further
comprising searching said lookup table in order starting with
said entry with a lowest repeat value.

13. The method of claim 9, wherein said entries are stored
in order of increasing event ID value.

14. The method of claim 13, said retrieving further
comprising searching said lookup table using a binary
search.

15. The method of claim 9 further comprising removing
an entry from said table to discontinue generating future
numerical values for said entry.

16. The method of claim 9, wherein the lookup table is
stored in the form of a linear storage technique in hardware.

17. The method of claim 9, wherein the lookup table is
stored in the form of a linear storage technique in config-
urable memory.

18. The method of claim 9, wherein the lookup table is
stored in the form of a non-linear storage technique.

19. The method of claim 1 further comprising resetting
said repeat flag to discontinue generating future numerical
values for said alert signal.

10

15

20

25

30

35

40

45

50

55

60

65

10

20. A repetitive interval timer comprising:

a clock register, including a clock register value incre-
mented by repetitive ticks;

a compare register, including a compare register value
with a corresponding event ID and repeat flag, wherein
the compare register value is a low value to generate an
alert signal, and wherein said event ID is associated
with a corresponding repeat value if said corresponding
repeat flag is set;

a comparator coupled to the clock register and the com-
pare register, wherein the comparator continuously
compares the clock register value with the compare
register value and generates an alert with the corre-
sponding event ID when the clock register value is
equal to or greater than the compare register value;

a storage device coupled to the compare register, wherein
the storage device actively maintains numerical values
representing repetitive time intervals, with correspond-
ing event IDs and repeat flags, in ascending numerical
order; and

a repetitive interval generator coupled to said compare
register for testing said repeat flag upon occurrence of
said alert, wherein if said repeat flag is set, said
repetitive interval generator adding said corresponding
repeat value to said compare register value to generate
a new numerical value for insertion into said numerical
order maintained by said storage device.

21. The timer of claim 20, said repetitive interval gen-
erator comprising a repeat flag test module for said testing
of said repeat flag and for generating a trigger if said repeat
flag is set.

22. The timer of claim 21, said repetitive interval gen-
erator further comprising:

a repeat value lookup table having repeat event IDs and

corresponding repeat values; and

a repeat value lookup module coupled to said repeat flag
test module for receiving said trigger and coupled to
said repeat value lookup table for retrieving said repeat
value corresponding to said event ID upon receiving
said trigger.

23. The timer of claim 22, wherein said repeat event IDs
provide an index to said corresponding repeat values in said
repeat value lookup table.

24. The timer of claim 23, said repetitive interval gen-
erator ether comprising a summer coupled to said repeat
value lookup table and to said compare register for adding
said repeat value to said compare register value for gener-
ating said new numerical value for said insertion into said
numerical order.

25. The timer of claim 24, further comprising a temporary
base register coupled to said compare register and to said
summer for holding the compare register value for input to
said summer.

26. The timer of claim 22, wherein said repeat event IDs
and said corresponding repeat values are stored in order of
increasing repeat value.

27. The timer of claim 22, wherein said repeat event IDs
and said corresponding repeat values are stored in order of
increasing event ID value.

28. The timer of claim 20, wherein repeat value lookup
table comprises:

a linear memory device having a first plurality of records
for storing repeat values and a second plurality of
records for storing event IDs, wherein the first and
second plurality of records are coupled.

29. The timer of claim 20, wherein the repeat value

lookup table comprises:

US 6,314,524 B1

11

a linear memory device having a plurality of records for
storing repeat values and event IDs.
30. The timer of claim 20, wherein the repeat value
lookup table comprises:

a linked list controller;

a nonlinear memory device coupled to said linked list
controller, said device including a first plurality of
records for storing repeat values, a second plurality of
records for storing event IDs, and a third plurality of
records for storing next pointers, wherein the controller
actively maintains the non-linear memory device to
have the repeat values with corresponding event IDs
and corresponding pointers be in ascending order of
said repeat values.

31. The timer of claim 20, further comprising repetitive
interval initialization logic coupled to said storage device for
insertion of an initial repetitive interval numerical value, and
coupled to said repeat value lookup table for insertion of a
corresponding new repeat event ID and corresponding new
repeat value.

32. A repetitive interval timer comprising:

a high-speed clock;

a clock register coupled to said clock, including a clock
register value incremented by repetitive ticks from said
clock;

a compare register, including a compare register value
with a corresponding event ID and repeat flag, wherein
the compare register value is a low value to generate an
alert signal, and wherein said event ID is associated
with a corresponding repeat value if said corresponding
repeat flag is set;

10

15

20

25

30

12

a comparator coupled to the clock register and the com-
pare register, wherein the comparator continuously
compares the clock register value with the compare
register value and generates an alert with the corre-
sponding event ID when the clock register value is
equal to or greater than the compare register value;

a storage device coupled to the compare register, wherein
the storage device actively maintains numerical values,
with corresponding event IDs and repeat flags, in
ascending numerical order; and

a repetitive interval generator including

a repeat flag test module coupled to said compare
register for testing said repeat flag upon occurrence
of said alert and for generating a trigger if said repeat
flag is set;

a repeat value lookup table having repeat event IDs and
corresponding repeat values;

a repeat value lookup module coupled to said repeat
flag test module for receiving said trigger and
coupled to said repeat value lookup table for retriev-
ing a repeat value corresponding to said event ID and
said alert upon receiving said trigger; and

a summer coupled to said repeat value lookup table and
to said compare register for adding said correspond-
ing repeat value to said compare register value for
generating said new numerical value for insertion
into said numerical order.

