a2 United States Patent

Blaszczak et al.

US006751787B1

(10) Patent No.:
5) Date of Patent:

US 6,751,787 B1
Jun. 15, 2004

(549) GRAPHICAL PROGRAMMING LANGUAGE 5,913,063 A * 6/1999 McGurrin et al. 717/109
FOR REPRESENTATIONS OF CONCURRENT 5,946,485 A 8/1999 Weeren et al. 395/703
OPERATIONS 6,131,184 A 10/2000 Weeren et al. 717/2

6,173,438 B1 1/2001 Kodosky et al.
(75) Inventors: Bogdan Blaszczak, Coppell, TX (US); 6,243,861 B1 * 6/2001 Nitta et al. 717/108
Mvra Hambleton. Plano. TX (US)' 6,282,699 Bl 8/2001 Zhang et al.
),, > ’ . Al 6,385,769 B1 5/2002 Lewallenccc....... 717/125
Eric Weeren, Plano, TX (US); Ellis K. 6:606,740 B1 * §2003 Lynn et al. w....ooooc... 717/100
Cave, Plano, TX (US)
OTHER PUBLICATIONS
(73) Assignee: Intervoice Limited Partnership, Reno,) . .
NV (US) Dahl et al. Visual Programming as an interface between
program and user. IEEE. 1989. pp. 18-23.*
(*) Notice: Subject to any disclaimer, the term of this Kodosky et al. Visual Programming Using Structured Data
patent is extended or adjusted under 35 Flow. IEEE. 1991. pp. 34-39.%
U.S.C. 154(b) by 456 days. U.S. patent application Ser. No. 09/603,334, Weeren et al.,
filed Jun. 26, 2000.

(21) Appl. No.: 09/687,296 * cited by examiner

(22) Filed: Oct. 13, 2000 Primary Examiner—Wei Zhen

(51) Int. CL7 oo GO6F 9/44 (74) Anorney, Agent, or Firm—Fulbright & Jaworksi L.L.P.

(52) U.S. Cl. .. 717/105, 717/109 (57) ABSTRACT

(58) Field of Searchc.cccoceuvveiine. 717/106-109,

717/104-105, 100, 113; 345/967 A simplified programming language is disclosed. The main
flow of the program is enclosed in one or more frames.

(56) References Cited Concurrent operations and asynchronous events that may

affect the main program code are attached to the frames as
U.S. PATENT DOCUMENTS decorations. Operations within the frames may loop or pause
4,860,204 A 8/1989 Gendron et al. until an outside event defined in a decoration causes the
5,386,568 A * 1/1995 Wold et al. 717/162 main program to exit the frame or to end. Concurrently
5,485,617 A * 1/1996 Stu.tz etal. .oooiiiiinnnnn. 709/315 Operaﬁng programs may Cooperaﬁvely exchange data using
5,487,141 A : 1/1996 Cain et al. - 3457764 the decorations. The present language enables software code
272431272?8 2 . Z ggg gerry etal. .. ;g; ;2; to be easily updated or modified by changing the decorations
,546, CITY vvvvnnnes
5751914 A * 5/1998 Coley et al. woooooevee...... 706/47 ~ thatare connected to the program frames.
5,838,974 A 11/1998 Ritscher et al.
5,850,548 A 12/1998 Williams 58 Claims, 5 Drawing Sheets
401 , ; e K
~ GET P2's PHONE NUI:BER AND P1's NAME | : ON (tpoB: GO i) <408 |
402~ START AppB | i [PLAY *P2 IS NOT AvAILABLE" | i
¥ Aoph i - l 4 i
PLAY “P2 IS NOW BEING DIALED" (4%%) ! 410 Z !
403~ piay “AT ANY TIME, PRESS 1 FOR VOICEMAIL, PRESS N i [TRANSFER T0 VOICEMAIL |
2 TO REPEAT MESSAGE, AND PRESS + TO END CALL" i 1 412 |
¥ __1 1
404~ PLAY MESSAGE] T END AppA | |
| 1 1 1
-) N | 1 . 408
] WAIT FOR SELECTION OR END OF MESSAGE | b ON (AppB: TALK TO ME) !
7 7 417] : (PLAY “CONNECTING” | :
4 7
oo o] 08 FRAME EvewTs | ! 3 l 4 :
MESSAGE [__SEND (appB, REQUEST W) _ | Do 1 [ENovENT (Xt FRAVE, A)] |
7 419 07 e a
418 l /
@GE [Py pieast Hopr] A
4771 CONNECT LiNEs |
415 A events
,____4_29____. ______ o A2 [SEND (ppB, CONNECT) |
: ON (AppB: TALK TO ME) ! 3 4\28
416~ PLAY_MESSAGE : |PLAY “P2 WILL TAKE YOUR CALL"| : | PLAY “GOODBYE™ |\424
! 423 !
o : 422 l Y : | SEND (appB, QuT) ko 425
205 i | ENDEVENT: (EXIT FRAME, A) |
— S oo oo omoooooos 2 [END AppA N

US 6,751,787 Bl

Sheet 1 of 5

Jun. 15, 2004

U.S. Patent

A
:_/ﬂoz
Y A Z=3LV1S
1
- W IIVW 3D10A OL
S3114vd dN ONNH BI0A 0L ON3S 0L Z SS3¥d ¥0
LDINNOD ldw AV1d STISNVALL 1OINNOD OL | SS3id.,
+'1d WO¥4 TVD V.. AVd
/¥ /o4 /4 4 N\
TANE 911 @ 9 ¢l 8 Yool
0il
NOILOV OL
09
8 3 g a — — 4
201 . . 5 5 q v | -] NolLov LX3IN dNn %007
s 4
Z=ISNOJSI¥ |1=ISNOJSI¥ dNONVH dNONVH Q3114 QFYIMSNY INZWIND -~ 601 ™
Zd \mn_ Zd N ma_n_ TV 2d TV Mv | 404 LIV
10} p 80l X
|
70 (LY4V YOI4d) o s
y, [N | $
001 q01-" ﬂa
INYN S.Ld ONV
GOL-"{y3gnnN INOHd S.Zd 139

U.S. Patent Jun. 15, 2004 Sheet 2 of 5 US 6,751,787 B1

201~ GET P2's PHONE NUMBER
1T OAND Pi's NAME FIG. 2
' (PRIOR ART)
202~ siaRT AppB |
: (AppA)
PLAY “P2 IS NOW BEING DIALED" 200

PLAY “AT ANY TIME, PRESS 1 FOR |-203
VOICEMAIL, PRESS 2 TO REPEAT
MESSAGE, AND PRESS « TO END CALL"

!
[puav Messce 204

Ki
[warr ror event 205
206
END OF ¥
MESSAGE | 2 1] 'y AppB: | AvpB:
| MESSAGE + 1 SEND (AppB, PAY | cowal TAK
~ L REQUEST VM) [>-209 | “GOODBYE" K_ T0 ME
207 j T T 224
PLAY MESSAGE| PLAY “PLEASE SEND (AppB,
HOLD" [™210 | Quim) [™~225
208 - '
K PLAY
511~ WAIT FOR EVENT| [END AppA |_9o5 | |“CONNECTING”
\
223
AppB: TALK
END OF 1O ME_ 212 AppB: GO VM .
MESSAGE § T gl
PLAY “P2 WILL TAKE PLAY “P2 IS
PLAY MUSIC YOUR CALL" [™~215 219~7| NOT AVAILABLE"
< |
Y
213 CONNECT LINES K_916 220 | CONNECT_LINES |
v
SEND (AppB, SEND (AppB,
CONNECT) [~217 221-7] CONNECT)
L
A

U.S. Patent Jun. 15, 2004 Sheet 3 of 5 US 6,751,787 B1

301~] DIAL WITH CALL FIG. 8
PRO‘iRESS (PRIOR ART)
302~J " waIT FOR EVENT (AppB)
}Jo
AppA: REQUEST WM AppA: QUIT
CALL ANSWERED CALL FAILED 305
PLAY “A CALL v
FROM NAME" “PRESS SEND (AppA, GO VM)
306~J 110 CONNECT OR
PRESS 2 TO SEND 304
T0 VOICEMAIL” ‘ J |
' END AppB
307~ WAIT FOR EVENT
X 308
DO
CASE ON
EVENT
1 : T AppA:) AppA:
AppA: CONNECT 0 ir REQUEST WM | 19
\ 4 \ 4 Y /
SEND (AppA, TALK PLAY “CALLER SEND (AppA, GO VM)
3157 T0 ME) HANGUP"' |
! ?12 PLAY “CALLER GONE
316 PLAY “CONNECTING” T0 VOICEMAIL”
. N
y 309 314
317" WAIT FOR EVENT \ /
SEND (AppA, GO VM)
DO !
CASE ON " "
ook St S PLAY “GOODBYE
REQUEST WM N
313 AL OTHER 310
EVENTS v Y Y ¥

END AppB ~-311

US 6,751,787 Bl

Sheet 4 of 5

Jun. 15, 2004

U.S. Patent

3] by On3 ———————— - — ~\
- AIETITO R E RN iy
S¢v~J" (1ino "gddv) N3 _ 7] 4 _
¥ “ YA / “ _
- v?/_ 3180009.. AVl I [T¥0 ¥NOA WL TIM 2d. AVId | | [Fovssan avnd _\@:.
N t "r (3N OL »vL ‘gddy) NO .m ;
| (19300 ‘addv) an3s | e LT ’
I [sivana |- 0CF GLy
[swn oo pLck /
¥ vl |1 .w,_ox 3V, AV || | [T+ 3ovssan |
[
Feo=——— e T L R 61y B}y
DL O I) o | U [(w 1303y ‘addy) aNzs | JOVSSIN
! - P o ! F ' o |
| ¥y p, 1 | SINIA] JNVY 90¥
| 1
D [_owuomwoo, Ad] 1 A _ 4
N 40 ONI ¥0 NOILOITIS ¥04 LIVM
| \a: 0L YvL ‘gddv) NO “ L | RSN & ”_o;, ° - J
! 601 L
L] yddy QN3 |+ _ uo%mwz A1d N vop
1 1
" Ly “ L TVD N3 OL * SS3¥d ONV ‘JOVSSIN Lv3d3¥ OL ¢
" _ TIVNIDION OL ¥IASNWML _ “ vo/o SS3d IVWIDIOA ¥04 | SSIHd INIL ANV LV, AVid ~—cop
| 7 o | v .Q3VIQ ONI38 MON SI Zd. AVId
[Ly _ (vddy)
_ 4 _ !
|| .3J8YIVAY ION Si d N1d | | gddy 1yv1S ~z0%
| (WA 09 :gddv) NO I i
80y .
| 8Oy T Yy 91 INVN S.1d ONV 38NN INOH S.2d 139 N 1o

US 6,751,787 Bl

Sheet 5 of 5

Jun. 15, 2004

U.S. Patent

addy N3 |-¥es
+
lllll lllllllll'llll'll— .

“._%/ﬁ T O | i @e) G OId [_.usooom.. wd s
_ 00S
| ozs ! " N [(w09 vady) anas 965
P3N dnONTH 43TV, AVId | !)
1 SIS vdd _ (T = = T)
! = (L0 ¥) NO ! ! [Goviwoo) wanaana |85 1| OIS

| NN@/V -wd 1 JNVYA
R T O o 0
|
1 * | @Nm..
1 816~ IVA3DI0A OL b1zl [snm |
| L1 4 I BELELE f
“ L 00 vidy) on3s | “ [(w o1 ¥vi 'vddv) aN3S N gz
Lyl (WA 1S3nD3Y :vddy) NO ! IV
I I - a | 4
19151 gddy N3 | “ SCS ™ 3IV3010A 0L ONJS OL Z SSid ¥0 Bwﬂ_uoo e
L e e e

T -7 ddy aN

! 05— (v "IWvad 11x3) :INIATON3 | ! _ 8 <*o 3 605
b oG (WA 1S3N03Y ¥ddv) NO “ [w09 vio) a5 |_gqe
“ _TuJ_ €05 v ta3nv4 QIYIMSNY
“ 9051 ooy | " ! ~ [sswooud TvO HUM MO N 706
] y0G —— (LInD vddy) NO I ———1 SIN3AJ . - 10G

US 6,751,787 B1

1

GRAPHICAL PROGRAMMING LANGUAGE
FOR REPRESENTATIONS OF CONCURRENT
OPERATIONS

TECHNICAL FIELD

The present invention relates to graphical programming
and, more particularly, to a programming environment
which simplifies construction of programs that are used to
control concurrent operations within a system.

BACKGROUND

Currently, there are two types of implementations to deal
with asynchronous events encountered in software pro-
grams. One implementation uses a state table to define
actions that are to be taken for various events that occur
during different states. The other implementation uses mul-
tiple wait loops interspersed in the linear flow of the con-
trolling program.

In a pure state table application all of the actions to be
taken are defined in a table. Each state may correspond to a
number of events, and an action is defined for each state/
event combination. Transitions from one state to another
state are defined for asynchronous events. When an asyn-
chronous event is detected, the system looks to the state
table to determine what transition should be made or what
action should be taken. A problem with the state table
approach is the size of the table. In a complex system there
can be hundreds of states and events. Typically, in a state
table there is only one wait loop and a large data structure
indicates the transitions among the states. The table essen-
tially contains pointers to sections of code. Every time the
system comes to a new state, it goes and executes that
section of code. The code is non-interruptible and when it is
completed, the system returns to the state table to wait for
the next event to occur.

When moving through the data structure in state
transitions, the program almost flows randomly. It is difficult
to follow this long complicated data structure, thus increas-
ing the complexity in programmers creating/modifying such
software programs. Another problem with state tables is that
they are difficult to understand. Although the state tables
thoroughly specify the problem, state diagrams are not
easily understood, thus further increasing the complexity
involved with creating/modifying software programs.

In the multiple wait loop applications, instead of going
back to a central state wait loop, the program has a more
linear flow, thus somewhat aiding the readability of such
programs. Typically, if there are any asynchronous events,
the program will use a wait loop or wait process in the code.
A positive result is that programs have more of a linear flow.
The downside is that there can be dozens of these wait loops
interspersed within the code. This is because everywhere the
program expects an event to occur, it has to be able to handle
a number of different events and corresponding actions.
Accordingly, following such a wait loop method of the prior
art may increase the overall length and complexity of the
code, which may result in increased difficulty involved with
creating/modifying/debugging such software code.

SUMMARY OF THE INVENTION

The present invention is directed to a graphical program-
ming language which is adapted to simplify coding for
programs that must handle asynchronous events in a system
having concurrent operations. In a preferred embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

2

such a programming language is utilized to create programs
that may control a system, such as telecommunications
applications, in which events that affect program operation
may occur at random times in a random order. Two or more
of cooperative programs may be designed to run concur-
rently to control separate parts of a single system or to
control related portions of two different systems. For
instance, such cooperative programs may be capable of
exchanging event information that is related to current
conditions or actions in the system(s).

The programming language disclosed herein is adapted to
run on a graphical development system, such as a processor-
based computer system, that may include a display and data
storage device, such as random access memory (RAM), hard
drive, floppy drive, CD-ROM drive, tape drive, or any other
suitable data storage device. Exemplary graphical develop-
ment environments that may be implemented on such a
computer system are disclosed in U.S. Pat. No. 5,946,485
entitled “ENHANCED GRAPHICAL DEVELOPMENT
ENVIRONMENT FOR CONTROLLING PROGRAM
FLOW,” which issued from application Ser. No. 08/599,134,
filed Feb. 9, 1996; co-pending and commonly assigned
application Ser. No. 09/310,442, filed May 12, 1999, entitled
“ENHANCED GRAPHICAL DEVELOPMENT ENVI-
RONMENT FOR CONTROLLING PROGRAM FLOW;”
and co-pending and commonly assigned application serial
number 09/603,334, filed Jun. 26, 2000, entitled
“ENHANCED GRAPHICAL DEVELOPMENT ENVI-
RONMENT FOR CONTROLLING PROGRAM FLOW; ”
the disclosures of which are all hereby incorporated herein
by reference.

In a preferred embodiment of the present invention, the
main code of the program is written in a linear fashion that
includes one or more frames. The program performs the
functions defined in the frames while waiting for triggering
events to occur. As an example, the main code may be a loop
which performs an unlimited number or a set number of
repetitive operations until interrupted by a triggering event.
On the other hand, the main code frame may perform a
function and then suspend until an event is detected. In some
cases, the events may cause other programs to run, or they
may provide data to other programs. In other cases, the
events cause the program to exit the current code frame and
to move on to another code frame or to end.

The present language can be graphically represented as
having one or more frames of code to which events are
associated or “attached.” The asynchronous events and their
related actions may be referred to as “decorations” herein.
An advantage of one aspect of a preferred embodiment of
the present invention is the programmer’s ability to write the
program main code in a linear fashion without initially
accounting for any or all interrupting events. Events may
then be attached to the main code frame to account for
various states that may be detected by the program.
Additionally, events may easily be added and/or modified
from time to time without requiring extensive modification
to the main code. That is, events may be added and/or
modified from time to time within the decorations associated
with the frames housing the main code for the program’s
operation. For example, the main code may play a looping
series of messages without any defined exit point. However,
decorations may be added to the main program frame so that
certain specifically defined events will cause the program to
take appropriate actions, such as exiting the frame, perform-
ing another function, or ending its execution.

One feature that may be recognized by one aspect of a
preferred embodiment is that a graphical programming

US 6,751,787 B1

3

language in which the main program flow is enclosed in one
or more frames is provided. The program performs the
operations defined by the main code in the frames. Asyn-
chronous events, which affect the main code, are attached to
the frames as “decorations.” The decorations may cause the
main code to move to another frame or to end, as examples.
As further examples, the decorations may initiate other
programs or perform particular functions.

Another feature that may be recognized by one aspect of
a preferred embodiment is that a programming structure in
which one or more frames may be nested within another
frame with the nested frames inheriting the decorations of
the primary (or “main” or “parent”) frame is provided.

Yet another feature that may be recognized by one aspect
of a preferred embodiment is that a programming structure
that simplifies programming for concurrent operations or for
asynchronous events is provided. Also, a preferred embodi-
ment of the present invention enables programmers to easily
update or modify existing code by changing the decorations
associated with (e.g., connected to) each program frame.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the
subject of the claims of the invention. It should be appre-
ciated by those skilled in the art that the conception and
specific embodiment disclosed may be readily utilized as a
basis for modifying or designing other structures for carry-
ing out the same purposes of the present invention. It should
also be realized by those skilled in the art that such equiva-
lent constructions do not depart from the spirit and scope of
the invention as set forth in the appended claims. The novel
features which are believed to be characteristic of the
invention, both as to its organization and method of
operation, together with further objects and advantages will
be better understood from the following description when
considered in connection with the accompanying figures. It
is to be expressly understood, however, that each of the
figures is provided for the purpose of illustration and
description only and is not intended as a definition of the
limits of the present invention.

BRIEF DESCRIPTION OF THE DRAWING

For a more complete understanding of the present
invention, reference is now made to the following descrip-
tions taken in conjunction with the accompanying drawing,
in which:

FIG. 1 is a flowchart of a prior art program using a state
table method of coding;

FIG. 2 is a flowchart of a prior art program using a wait
loop program;

FIG. 3 is a flowchart of a wait loop program of the prior
art which operates in conjunction with the program illus-
trated in FIG. 2;

FIG. 4 is an exemplary flow diagram of a program
embodying the programming method of a preferred embodi-
ment the present invention; and

FIG. 5 is an exemplary flow diagram of a program which
operates in cooperation with the program of FIG. 4 in a
preferred embodiment.

DETAILED DESCRIPTION

For illustration purposes, a telephone assistant application
will be used to describe the present invention and to compare

10

20

25

30

35

40

45

50

55

60

65

4

the invention to the prior art programming methods. Of
course, it should be understood that the programming tech-
niques disclosed herein are not intended to be limited solely
for programs for implementing a telephone assistant system,
but may be utilized to implement any type of program. In the
telephone assistant example, a caller accesses the system and
provides a destination number for a called party and a calling
party identification, such as the caller’s name. In some
embodiments, while one part of the system contacts the
called party and inquiries as to how the called party desires
to have the call handled, another part of the system plays
messages, such as advertisements, to the calling party. Once
the called party indicates how he/she desires to have the call
handled, the system stops playing messages and the system
handles the call in the appropriate manner. This system is
similar to an automatic call director (ACD) system for
customers who call an understaffed customer service num-
ber. While the customers wait for an available agent, they
hear a series of messages or advertisements generated by the
ACD system.

FIG. 1 represents a prior art state machine approach to
controlling the telephone assistant system. Flow diagram
100 represents a software program for controlling a tele-
phone assistant system using a state diagram for a call
received from a calling party P1 to a called party P2. State
machine 101 defines a number of actions 102 that occur
within program 100 depending upon the current state 103
and system events 104. Program 100 begins in step 105 by
receiving from the calling party P1 a destination telephone
number (i.e., a telephone number for called party P2) and the
name of the calling party P1. In step 106, program 100 dials
the destination number. Current state 103 is set to “1” in step
107. In step 108, the system waits for an event 104. Initially,
step 108 waits for the results of dialing step 106.

State table 101 lists four possible events that may occur
following dialing step 106 (i.c., events that may occur while
the current state is “17): “P2 Call Answered,” wherein the
called party answers the call from P1; “P2 Call Failed,” such
as when the called number is busy or is not answered; “P1
Hang Up,” wherein the calling party P1 quits before con-
nection to the called party P2; and, “P2 Hang Up,” wherein
the called party P2 answers the call from the system and
hangs up being being connected to caller P1. As shown in
State table 101, each of these events corresponds to a
specific action, A, B, C, D, or E. After determining the event,
in step 109 program 100 looks up the corresponding action
in table 101. In step 110, program 100 performs the specific
action identified in step 109.

For example, if the calling party P1 hangs up, then the
event is “P1 Hang Up” and program 100 will do case)or
action) “C” in step 110. In this case, “C” directs program 100
to end in step 114. Likewise, if the called party P2 answers
the call and hangs up, then the event is “P2 Hang Up” and
program 100 will again perform case “C” in step 110. On the
other hand, if an answer is not obtained for the dialed
number, then the event will be “P2 Call Failed” and step 110
will do case “B.” In step 115, program 100 transfers calling
party P1 to a voice mail application for called party P2 and
then ends in step 114.

If the dialing step (106) was successful (i.e., Called Party
P2 answers), then the event will be “P2 Call Answered” and
program 100 will do case “A” in step 110. The system is
directed in step 111 to play a message notifying Called Party
P2 that the call is from Calling Party P1 and instructing P2
to press 1 to connect the call or press 2 to send the call to
P2’s voice mail. Program 100 then sets the state to “2” in
step 112 and loops back to step 108 to wait for a dual tone
multifrequency (DTMF) response from the called party.

US 6,751,787 B1

5

When a new event is detected, program 100 looks up the
corresponding state “2” action in step 109 and performs that
action in step 110. Table 101 illustrates four possible
responses to the DTMF prompt of step 112: the called party
presses either “1” or “2”, the caller P1 disconnects, or the
called party P2 disconnects. If the caller P1 disconnects,
then the event will be “P1 Hang Up” and step 110 moves to
action “D.” In step 116, the system plays a message noti-
fying the called party P2 that the caller P1 hung up, and then
program 100 ends in step 114. Similarly, if the called party
P2 disconnects, then the event will be “P2 Hang Up” and
step 110 moves to action B, wherein the calling party P2 is
transferred to a voice mail application for called party P2 in
step 115 and then program 100 ends in step 114. Likewise,
if the called party P2 decides to send the call to voice mail
and presses keypad button “2,” then the event will be “P2
Response=2" and program 100 will perform action “B” in
step 110, wherein the calling party P2 is transferred to a
voice mail application for called party P2 in step 115 and
ends in step 114.

If the called party indicates a desire to connect the call by
pressing “1” following step 12, then the event will be “P2
Response=1”" and program 100 will perform action “E” in
step 110. In step 120, program 100 completes the connection
between the calling party P1 and the called party P2, and
then program 100 ends in step 114.

It should be recognized from this example that state table
101 may specify different actions to be taken in response to
an event for different states of the program’s execution. In an
actual telecommunications system, state table 101 would be
much bigger having many possible states, events, and
actions not illustrated here. As table 101 grows, it is difficult
to verify that all of the actions in the table are correct or that
each event/state combination produces the desired action.
Accordingly, the difficulty and complexity in creating,
modifying, and debugging a program that utilizes such a
state table becomes undesirably high.

FIGS. 2 and 3 are flowcharts representing complementary
programs 200 and 300 in a telephone assistant system of the
prior art. Program 200 (also referred to as “application A” or
“App A”) illustrates operations related to the caller P1 and
program 300 (also referred to as “application B” or “App
B”) is related to the called party P2. Programs 200 and 300
are event driven applications in which the events are hard-
coded into the application so that the programs branch at
each event. Program 200 is directed to handling an inbound
call to the telephone assistant system. Program 300 is
directed to handling outbound calls to called parties. Pro-
grams 200 and 300 must exchange data at various times in
order to operate properly. The exchanged data corresponds
to system events.

Program 200 begins by connecting to a caller P1 at step
201 and obtaining the telephone number of the called party
P2 and the name of the caller P1. In step 202, program 200
directs program application 300 (of FIG. 3) to start, and
provides P2’s telephone number and P1°s name to program
300. The operation of program 300 will be discussed in
detail below. In step 203, program 200 plays a message for
caller P1 notifying P1 that P2 is being dialed, and instructing
P1 to press 1 for voice mail, press 2 to repeat a message, or
press * to end the call. This allows the caller to access voice
mail for called party P2, repeat a message, or end the call
during the time that P1 is waiting to be connected to P2.
Thus, for example, if caller P1 becomes impatient in holding
for called party P2, caller P1 may press 1 to immediately
access P2’s voice mail. While program 300 attempts to
contact the called party, program 200 enters a message loop

10

15

20

25

30

35

40

45

50

55

60

65

6

in step 204. More specifically, the system plays a first
message, such as an advertisement, to the caller in step 204.
While the message is playing, the system waits for the next
event in step 205, and upon detection of an event, program
200 takes the appropriate action in step 206.

There are six possible events in the example system: (1)
the message being played finishes (i.e., event “End of msg”),
(2) caller P1 enters a DTMF input of “1” (i.e., event “17), (3)
caller P1 enters a DTMF input of “2” (i.e., event “27), (4)
caller P1 enters a DTMF input of “*” (i.e., event “*”), (5)
program 300 signals to program 200 to send caller P1 to
voice mail (i.e., event “AppB: Go VM”), and (6) program
300 signals to program 200 to connect caller P1 to called
party P2 (i.e., event “AppB: Talk to Me”). If the message
finishes and there is no DTMF input from caller P1 or
program 300 event (i.e., event “AppB: Go VM” or event
“AppB: Talk to Me”) received by program 200, then pro-
gram 200 takes the appropriate actions at step 206 for the
event “End of msg.” That is, program 200 advances to the
next message (e.g., the next advertisement) in step 207 and
plays such message to caller P1 at step 208. While this next
message is playing, program 200°s operation returns to step
205 to await the next event.

If, in step 205, caller P1 presses the “2” button on the
telephone keypad to input the corresponding DTMF signal
(indicating a desire to repeat the current message), program
200 branches to event “2” in step 206, wherein step 208 is
performed to play the current message (i.c., to repeat the
current message without advancing to the next message).
While the message is repeating, program 200°s operation
returns to step 205 to await the next event.

If, in step 205, caller P1 presses the “1” button on the
telephone keypad to input the corresponding DTMF signal
(indicating a desire to be transferred to P2’s voice mail),
program 200 branches to event “1” in step 206. At this point,
arequest for voice mail is sent from program 200 to program
300 (i.e., “App B”) in step 209, and a message to “please
hold” is played to caller P1 in step 210. Once the request for
voice mail is sent to program 300, program 200 waits to
receive an event in step 211, and upon receiving an event,
takes the appropriate action in step 212. One event that may
be received at this point is an end of the current message that
is being played to caller P1, in which program 200 branches
to event “End of msg” in step 212 to play music (or other
message) to caller P1 in step 213. Once the music is started
in step 213, program 200’s execution returns to step 211 to
await the next event.

Another event that may be received while waiting in step
211 is a response from program 300 to transfer caller P1 to
voice mail as requested, in which program 200 branches to
event “AppB: Go VM” in step 212. In this case, program
200 plays a message that “P2 is not available” in step 219,
connects caller P1 to the voice mail in step 220, sends a
message to program 300 that P1 was connected to voice mail
in step 221, and then ends its execution in step 218. Yet
another event that may be received while waiting in step 211
is a response from program 300 to connect caller P1 with
called party P2. That is, while awaiting to be connected to
voice mail, called party P2 may indicate to program 300 that
P2 desires to connect with P1. In this case, program 200
receives notification from program 300 of P2’s desire to
connect to caller P1, and branches to event “AppB: Talk to
Me” in step 212. In response to this event, program 200
plays a message that “P2 will take your call” in step 215,
connects caller P1 to called party P2 in step 216, sends a
message to program 300 that P1 was connected to P2 in step
217, and then ends its execution in step 218.

US 6,751,787 B1

7

If, in step 205, caller P1 presses the button on the
telephone keypad to input the corresponding DTMF signal
(indicating a desire to end the call), program 200 branches
to event “*” in step 206. At this point, program 200 plays a
“goodbye” message to caller P1 in step 224, sends a “QUIT”
message to program 300 in step 225, and ends its execution
in step 226.

Alternatively, program 200 may receive a response from
program 300 in step 205. More specifically, program 200
may receive one of two different event messages from
program 300 in step 205: (1) successful connection to called
party P2 (i.e., event “AppB: Talk to Me”), or (2) called party
P2 refused the call (i.e., event “AppB: Go VM”). If called
party P2 accepts the call, then program 200 receives a
message from program 300 to this effect and branches to
event “AppB: Talk to Me” in step 206, wherein program 200
plays a “connecting” message in step 223, connects caller P1
to called party P2 in step 216, sends a message to program
300 that P1 was connected to P2 in step 217, and then ends
its execution in step 218. If, on the other hand, called party
P2 refuses the call, then program 200 receives a message
from program 300 to this effect and branches to event
“AppB: Go VM” in step 206, wherein program 200 plays a
message that “P2 is not available” in step 219, connects
caller P1 to the voice mail in step 220, sends a message to
program 300 that P1 was connected to voice mail in step
221, and then ends its execution in step 218.

It should be recognized from this example that program
200 may specify different actions to be taken in response to
events detected within different wait loops. For instance, in
the example of FIG. 2, if event “AppB: Talk to Me” is
received while waiting in step 205, a first action is taken, and
if event “AppB: Talk to Me” is received while waiting in
step 211, a different action is taken. More specifically, if
event “AppB: Talk to Me” is received while waiting in step
205, program 200°s execution performs operational steps
223,216,217, then 218, but if event “AppB: Talk to Me” is
received while waiting in step 211, then program 200’s
execution performs operational steps 215, 216, 217, then
218. It should also be recognized that as the number of wait
loops implemented within program 200 increases, the dif-
ficulty and complexity associated with evaluating the logical
flow of the program to create, modify, or debug such
program becomes undesirably high.

Program 300 begins in step 301 after receiving the called
party’s telephone number and the caller’s identification from
program 200. After dialing the called party’s number in step
301, program 300 waits in step 302 for the next event. There
are four potential events in step 302: (1) the call is success-
fully answered (i.e., event “Call Answered”), (2) a request to
be transferred to P2’s voice mail is received from program
200 (ie., event “App: Request VM”), (3) the call fails
because the call is not answered or a busy signal is encoun-
tered (i.e., event “Call Failed”), or (4) caller P1 terminates
his or her connection (i.e., event “App: Quit”).

If caller P1 has entered “*” in step 205 of program 200,
then in step 225 the “QUIT” message is sent to program 300.
If this message is received in step 302, then program 300
branches to event “ App: Quit” in step 303, wherein program
300 ends in step 304. If caller P1 has entered “1” in step 205
of program 200, then in step 209 a request for voice mail is
sent to program 300. If this message is received in step 302,
then program 300 branches to event “App: Request VM” in
step 303, wherein program 300 sends a message to program
200 to connect caller P1 to voice mail in step 305 and ends
its execution in step 304. Similarly, if the attempt to call the
destination phone number fails, (e.g., no answer is obtained)

Gkor

10

15

20

25

30

35

40

45

50

55

60

65

8

then program 300 branches to event “Call Failed” in step
303, wherein program 300 sends a message to connect caller
P1 to voice mail in step 305 and ends its execution in step
304.

If, on the other hand, a successful answer is achieved in
step 302, then program 300 branches to event “Call
Answered” in step 303, wherein program 300 plays a
message notifying P2 of “a call from P1” and directing P2
to “press 1 to connect or press 2 to send to voice mail” in
step 306. Thereafter, program 300 waits in step 307 for the
next event. There are five potential events that may be
received in step 307: (1) called party P2 presses “1” (i.e.,
event “17), (2) called party P2 presses “2” (i.e., event “27),
(3) a message received from program 200 that caller P1 is
requesting to be transferred to P2’°s voice mail (i.e., event
“AppA: Request VM™), (4) a message received from pro-
gram 200 that caller P1 has successfully connected to P2’s
voice mail (i.e., event “App: Connect”), or (5) a message
received from program 200 that caller P1 has terminated the
call (i.e., event “AppA: Quit”).

If called party P2 presses “2” in step 307 of program 300,
then program 300 branches to event “2” in step 308, wherein
program 300 sends a message to program 200 to transfer
caller P1 to P2’s voice mail in step 309, plays a “goodbye”
message to called party P2 in step 310, and ends its
execution in step 311. If in step 307 program 300 receives
a message from program 200 that caller P1 has been
connected to P2’s voice mail, then program 300 branches to
event “AppA: Connect” in step 308, wherein program 300
ends its execution in step 311. Similarly, if in step 307
program 300 receives a message from program 200 that
caller P1 has terminated the call, then program 300 branches
to event “App: Quit” in step 308, wherein program 300 plays
a message that “caller P1 hung up” to called party P2 in step
312 and ends its execution in step 311.

If in step 307 program 300 receives a message from
program 200 that caller P1 requests to be transferred to P2’s
voice mail, then program 300 branches to event “AppA:
Request VM” in step 308, wherein program 300 sends a
message to program 200 to transfer caller P1 to P2’s voice
mail in step 313, plays a message that “caller P1 has gone
to voice mail” to called party P2 in step 314, and ends its
execution in step 311. If, on the other hand, called party P2
presses “1” in step 307 of program 300, then program 300
branches to event “1” in step 308, wherein program 300
sends a message to program 200 to connect caller P1 to
called party P2 in step 315, plays a “connecting” message to
called party P2 in step 316, and then waits for the next event
to be received in step 317. Once program 200 connects caller
P1 to called party P2, program 200 returns a message to
program 300, which is identified as an “AppA: Connect”
event. If in step 317 program 300 receives a message from
program 200 that caller P1 desires to be transferred to P2’s
voice mail, then program 300 branches to event “AppA:
Request VM™ in step 318, which ignores the request for
voice mail and returns to wait in step 317. That is, once P2
has indicated a desire to accept P1’s call, a subsequently
received request from P1 to be transferred P2’s voice mail
will be ignored because P1 will instead be connected with
P2. In the event that some other event is received in step 317,
such as “AppA: Connect” or “App: Quit,” then program 300
branches to step 308 to execute the appropriate action for
such event in the manners discussed above.

It should be recognized from this example that program
300 may specify different actions to be taken in response to
events detected within different wait loops. For instance, in
the example of FIG. 3, if event “AppA: Request VM” is

US 6,751,787 B1

9

received while waiting in step 302, a first action is taken, if
event “AppA: Request VM” is received while waiting in
step 307, a different action is taken, and if event “AppA:
Request VM” is received while waiting in step 317, yet a
different action is taken. More specifically, if event “App:
Request VM” is received while waiting in step 302, program
300’s execution performs operational steps 305 then 304, if
event “AppA: Request VM” is received while waiting in
step 307, then program 300°s execution performs opera-
tional steps 313, 314, then 311, and if event “AppA: Request
VM” is received while waiting in step 317, no operational
steps are performed by program 300 in response thereto. As
with program 200, it should be recognized that as the
number of wait loops implemented within program 300
increases, the difficulty and complexity associated with
evaluating the logical flow of the program to create, modity,
or debug such program becomes undesirably high.

FIGS. 4 and 5 are also related to a single telecommuni-
cations system, and provide exemplary flow diagrams show-
ing an exemplary operational flow of software programs that
may be implemented in a preferred embodiment of the
present invention. Exemplary flow diagram 400 of FIG. 4
represents an exemplary program that controls the system’s
interaction with the caller P1. Exemplary flow diagram 500
of FIG. § represents an exemplary program for interacting
with the called party P2. In a preferred embodiment, pro-
grams 400 and 500 cooperatively exchange information
during operation. However, instead of using a state table or
a program having multiple wait loops, as is commonly
utilized in prior art programs, programs 400 and 500 of a
preferred embodiment use a frame language structure. In a
preferred embodiment of the present invention, the main
program operation is embodied in a logical frame to which
special case and event “decorations” are attached. The
decorations are not part of the flow of the main program and
they may or may not cause the main program to end. In some
cases, the decorations may activate another program frame.

Program 400 (which may also be referred to hereafter as
“application A” or “App A”) begins by obtaining the tele-
phone number for a called party P2 and identification of the
caller P1 (e.g., P1’s name or other identification) in step 401.
In step 402, program 500 (which may also be referred to
hereafter as “application B” or “App B”) may be initiated (if
not already executing), and this information is provided to
program 500. An exemplary operation of program 500 of a
preferred embodiment is disclosed in greater detail hereafter
in conjunction with FIG. 5. In step 403, program 400 may
play a message to caller P1 notifying P1 that “P2 is now
being dialed,” and further notifying P2 that he/she may
“press 1 for voice mail, press 2 to repeat a message, or press
* to end this call.” Of course, other methods of input may be
recognized by program 400 as well, such as voice recogni-
tion enabling caller P1 to speak commands to program 400.
This allows caller P1 to access voice mail for called party
P2, repeat a message, or end the call while P1 is waiting to
be connected to P2. Thus, for example, if caller P1 becomes
impatient in holding for called party P2, caller P1 may press
1 to immediately access P2’s voice mail. While program 500
attempts to contact called party P2, program 400 may begin
playing a first message, such as an advertisement, to caller
P1 in step 404.

Program 400 then enters frame 405 (which may be
referred to herein as a “main frame” or “parent frame”), and
waits in step 406 for input by caller P1, the end of the current
message being played, or some other event to occur. If the
message being played finishes, then program 400 detects an
“End of msg” event and takes the appropriate actions. That

10

15

20

25

30

35

40

45

50

55

60

65

10

is, program 400 advances to the next message (e.g., the next
advertisement) in step 415 and plays such message to caller
P1 at step 416. While this next message is playing, program
400°s operation returns to step 406 to await the next event.

If, in stepn 406, caller P1 presses the “2” button on the
telephone keypad to input the corresponding DTMF signal
(indicating a desire to repeat the current message), program
400 branches to event “2,” wherein step 416 is performed to
play the current message (i.c., to repeat the current message
without advancing to the next message). While the message
is repeating, program 400°s operation returns to step 406 to
await the next event.

Gkor

If, in step 406, caller P1 presses the button on the
telephone keypad to input the corresponding DTMF signal
(indicating a desire to end the call), program 400 branches
to event “*.” At this point, program 400 exits frame 405, and
advances its execution to step 424 to play a “goodbye”
message to caller P1. Program 400 then sends a “QUIT”
message to program 500 in step 425, and ends its execution
in step 426.

As shown, frame 405 may have particular events, such as
events 407, associated with it, which may be detected and
handled by program 400 while executing within frame 405.
More specifically, events 407 associated with frame 405 may
define the events that frame 405 is to intercept and the
actions to be taken in response to such events. Thus, a
preferred embodiment provides a graphical development
environment in which such associated events may be shown
as being associated with frame 405, e.g., associated events
may be shown as being attached to frame 405. For instance,
in FIG. 4 events 407 may be graphically represented as
being attached to frame 405. The asynchronous events 407
and their related actions may be referred to herein as
“decorations” to an associated frame. As shown in FIG. 4,
events 407 include event 408 (i.e., event “On (AppB: Go
VM)™), which is triggered when a message to transfer P1 to
voice mail is received by program 400 from program 500.
Events 407 further include event 409 (i.e., event “On (AppB:
Talk to Me)”), which is triggered when a message to connect
caller P1 to called party P2 is received by program 400 from
program 500.

For instance, if a message to transfer caller P1 to voice
mail is received by program 400 from program 500 while
program 400°s execution is within frame 405, then event 408
(ie., event “On (AppB: Go VM)”) is triggered. In response
to event 408, program 400 plays a message to caller P1 that
“P2 is not available” in step 410, transfers caller P1 to P2’s
voice mail in step 411, and ends its execution in step 412. If,
on the other hand, a message to connect caller P1 to called
party P2 is received by program 400 from program 500
while program 400’s execution is within frame 405, then
event 409 (i.c., event “On (AppB: Talk to Me)”) is triggered.
In response to event 409, program 400 pays a “connecting”
message to caller P1 in step 413, and then exits frame 405
to follow execution path “A” to advance its operation to step
427 to connect caller P1 to called party P2. Thereafter, in
step 428, program 400 sends a message to program 500 that
caller P1 has been connected to called party P2, and then
program 400 ends its execution in step 426.

As shown in the example of FIG. 4, a preferred embodi-
ment enables main code to be included in one or more
frames, which may be arranged in a logical, linear fashion,
and decorations defining various events and responsive
actions to such events may be associate with (e.g., attached
to) such frames. For instance, frame 405 includes the “main”
code for program 400, which specifies the actions to take

US 6,751,787 B1

11

when a caller inputs a “1,” “2,” or or the end of message
is reached, and decoration 407 is associated with frame 405,
which defines various events and responsive actions to take
for such events. In the example of FIG. 4, decoration 407
includes events that may be triggered by messages received
from complementary program 500. Thus, a preferred
embodiment enables decorations defining various events
and responsive actions to be associated with frames that
include “main” code, thereby enabling a programmer to
easily add/modify/debug such events and/or responsive
actions without being required to modify the “main” code
included within the associated frame.

If, in step 406 of program 400, caller P1 presses the “1”
button on the telephone keypad to input the corresponding
DTMF signal (indicating a desire to be transferred to P2’s
voice mail), program 400 branches to event “1,” thereby
entering frame 417 (which may be referred to herein as a
“sub-frame,” “nested frame,” or “child frame™). It should be
recognized that frame 417 is nested or contained within
frame 405, and therefore inherits features of frame 405 (i.c.,
inherits features of its “parent frame”). Thus, frame 417
operates as part of coding within program 405, within which
it is contained. Once program 400°s execution enters frame
417 it sends a request for voice mail to program 500 in step
418 and plays a message to “please hold” to caller P1 in step
419. As with frame 405, frame 417 may have particular
events, such as events 420, associated with it, which may be
detected and handled by program 400 while executing
within frame 417. Thus, as discussed above, a preferred
embodiment provides a graphical development environment
in which such associated events may be shown as being
associated with frame 417, e.g., associated events may be
shown as being attached to frame 417. For instance, in FIG.
4 cvents 420 may be graphically represented as being
attached to frame 417. Again, such asynchronous events 420
and their related actions may be referred to herein as
“decorations” to an associated frame (e.g., events 420 and
their related actions may be referred to herein as decorations
to frame 417).

As shown in FIG. 4, events 420 include event 421 (i.e.,
event “On (AppB: Talk to Me)”), which is triggered when a
message to connect caller P1 to called party P2 is received
by program 400 from program 500. If such event 421 is
detected by program 400 while it is executing within frame
417, program 400 advances its operation to step 422 to play
a message to caller P1 that “P2 will take your call” in step
422. Thereafter, event 421 is ended and the program’s
execution exits both frame 417 and frame 405 along execu-
tion path “A” to connect caller P1 to called party P2 in step
427. Thereafter, in step 428, program 400 sends a message
to program 500 that caller P1 has been connected to called
party P2, and then program 400 ends its execution in step
426.

It should be recognized that events 420 associated with
frame 417 may include events that are also included within
events 407 associated with frame 407, and different actions
to be taken may be specified for such events by such
“decorations” of frames 405 and 417. For example, in FIG.
4 events 409 and 421 are the same events (i.e., event “On
(AppB: Talk to Me)”). That is, both events 409 and 421 are
triggered upon program 400 receiving a message from
program 500 to connect caller P1 to called party P2.
However, if program 400’s execution is within parent frame
405 but not within child frame 417, a first action is taken
(e.g., steps 413 and 414 are perfonned) as specified by
decoration 407 and if program 400’s execution is within
child frame 417, a different action is specified by decoration

o

10

15

20

25

30

35

40

45

50

55

60

65

12

420 (e.g., steps 422 and 423 are performed). Accordingly, in
a preferred embodiment, a child frame may have associated
decorations that alter the actions to be taken upon detection
of an event from the actions that are specified for such event
by decorations associated with a parent frame.

Additionally, in a preferred embodiment, child frame 417
may inherit certain decorations that are associated with its
parent frame 405. For example, in FIG. 4 event 408 (i.c.,
event “On (AppB: Go VM)”) is included within events (or
decorations) 407 associated with frame 405, but such event
408 is not included within events (or decorations) 420
associated with frame 417. Thus, since frame 417 does not
have associated decorations specifying actions to be taken
upon detection of event 408, frame 417 inherits the actions
to be taken for such event from frame 405. Accordingly, in
a preferred embodiment, if while program 400 is executing
in frame 417, it receives a message from program 500 to
send caller P1 to voice mail (i.e. event “On (AppB: Go
VM)™), then the actions specified by decorations 407 for
such event will be performed. That is, program 400’s
execution will advance to step 410 and plays a message to
caller P1 that “P2 is not available,” then transfers caller P1
to P2’s voice mail in step 411, and ends its execution in step
412. In this case, frame 417 inherits the actions to be
triggered by an event from decorations 407 associated with
frame 405.

Turning now to FIG. §, an exemplary operational flow
diagram is shown for program 500. In a preferred
embodiment, frame 501 (which may be referred to as a
“main” or “parent” frame) is activated by step 402 in
program 400. In step 502, program 500 dials the called party
number provided by the caller P1. In a most preferred
embodiment, frame 501 is suspended (or waits) until the
results of dialing step 502 have been determined or some
other event is detected. In a most preferred embodiment of
the present invention, suspend steps (not shown) are used to
hold the main logical frames pending an event outside the
frame. In the example of FIG. 5, four potential events may
be detected while program 500 is executing in frame 501: (1)
the call to party P2 may be answered (i.e., event
“Answered”), (2) the call to party P2 may fail, such as no
answer received or a busy signal detected, (i.e., event
“Failed”), (3) a message may be received by program 500
from program 400 that caller P1 has terminated the call (i.e.,
event “On (App: Quit)”), and (4) a message may be received
by program 500 from program 400 that caller P1 has
requested to be transferred to voice mail (i.e., event “On
(App: Request VM)™).

As shown, frame 501 may have particular events, such as
events 503, associated with it, which may be detected and
handled by program 500 while executing within frame 501.
More specifically, events 503 associated with frame 501 may
define the events that frame 501 is to intercept and the
actions to be taken in response to such events. Thus, a
preferred embodiment provides a graphical development
environment in which such associated events may be shown
as being associated with frame 501, e.g., associated events
may be shown as being attached to frame 501. For instance,
in FIG. § events 503 may be graphically represented as
being attached to frame 501. As described above, the asyn-
chronous events 503 and their related actions may be
referred to herein as “decorations” to an associated frame.
As shown in FIG. 5, events (or decorations) 503 include
event 504 (i.e., event “On (AppA: Quit)”), which is trig-
gered when a message is received by program 500 from
program 400 that caller P1 has terminated the call. Events
(or decorations) 503 further include event 505 (i.e., event

US 6,751,787 B1

13

“On (AppA: Request VM)”), which is triggered when a
message is received by program 500 from program 400 that
caller P1 has requested to connect to P2’s voice mail.

For instance, if a message that caller P1 has terminated the
call is received by program 500 from program 400 while
program 500°s execution is within frame 501, then event 504
(ie., event “On (AppA: Quit)”) is triggered. In response to
event 504, program 500 terminates its execution in step 506.
If, on the other hand, a message that caller P1 has requested
to connect to P2’s voice mail is received by program 500
from program 400 while program 500’s execution is within
frame 501, then event 505 (i.e., event “On (AppA: Request
VM)”) is triggered. In response to event 505, program 500
advances its execution to step 507, in which program 500
ends the event and exits frame 501 to follow execution path
“A” to advance its operation to step 508 to send a message
to program 400 to connect caller P1 to P2’s voice mail.
Thereafter, in step 509, program 500 ends its execution.

If the call placed to party P2 in step 502 is determined to
fail (e.g., no answer is received or a busy signal is detected),
program 500 exits frame 501 and advances its execution to
step 508 to send a message to program 400 to connect caller
P1 to P2’s voice mail. Thereafter, in step 509, program 500
ends its execution. If, on the other hand, the call placed to
party P2 in step 502 is determined to be answered, program
500 exits frame 501 and advances its execution to enter
frame 510 (e.g., another “main” or “parent” frame). In the
example of FIG. 5, frame 510 controls the real-time inter-
action between program 500 and the called party P2. Once
execution enters frame 510, program 500 plays a message to
the answering party P2 notifying P2 of the “call from P1,”
and informing P2 that P2 may “press 1 to connect with P1
or press 2 to send P1 to voice mail” in step S11.

As with frame 501, frame 510 may have particular events,
such as events 512, associated with it, which may be
detected and handled by program 500 while executing
within frame 510. More specifically, events 512 associated
with frame 510 may define the events that frame 510 is to
intercept and the actions to be taken in response to such
events. As described above, the asynchronous events 512
and their related actions may be referred to herein as
“decorations” to an associated frame. As shown in FIG. 5,
events (or decorations) 512 include event 513 (i.e., event
“On (AppA: Connect)”), which is triggered when a message
is received by program 500 from program 400 that caller P1
has been connected with party P2 or to P2’s voice mail.
Events (or decorations) 512 further include event 514 (i.c.,
event “On (AppA: Request VM)”), which is triggered when
a message is received by program 500 from program 400
that caller P1 has requested to connect to P2’s voice mail,
and events (or decorations) 512 include event 515 (i.e., event
“On (App: Quit)”), which is triggered when a message is
received by program 500 from program 400 that caller P1
has terminated the call.

For instance, if a message that caller P1 has terminated the
call is received by program 500 from program 400 while
program 500°s execution is within frame 510, then event 515
(ie., event “On (AppA: Quit)”) is triggered. In response to
event 515, program 500 plays a message to party P2
notifying P2 that “caller P1 hung up” in step 520, and
terminates its execution in step 521. If, on the other hand, a
message that caller P1 has requested to connect to P2’s voice
mail is received by program 500 from program 400 while
program 500°s execution is within frame 510, then event 514
(ie., event “On (App: Request VM)”) is triggered. In
response to event 514, program 500 advances its execution
to step 517, in which program 500 sends a message to

10

15

20

25

30

35

40

45

50

55

60

14

program 400 instructing program 400 to connect caller P1 to
P2’s voice mail in step 517. Program 500 then plays a
message to party P2 notifying P2 that “caller P1 has been
transferred to voice mail” in step 518, and it ends its
execution in step 519. As yet another alternative, if a
message that caller P1 has been successfully connected (e.g.,
to party P2 or to P2’s voice mail) is received by program 500
from program 400 while program 500’s execution is within
frame 510, then event 513 (i.e., event “On (AppA:

Connect)”) is triggered. In response to event 513, program
500 advances its execution to step 516, in which program
500 ends its execution.

It should be recognized that frame 510 is not nested within
frame 501, and therefore does not inherit features of frame
501. Thus, frame 510 may have particular events (or
decorations) independently defined for it, apart from how
such events may be defined for frame 501. Thus, for
example, frame 510 may have particular events associated
with it, which may be defined in the same or a different
manner than for frame 501. For instance, as shown in the
example of FIG. 5, decorations 503 assigned to frame 501
include events 504 and 505, and decorations 512 assigned to
frame 510 include events 513, 514, and 515. It should be
recognized that in FIG. 5 events 504 and 515 are the same
events (i.e., event “On (AppA: Quit)”), and events 505 and
514 are the same events (i.e., event “On (AppA: Request
VM)™). That is, both events 504 and 515 are triggered by
program 500 receiving a message from program 400 that
caller P1 has terminated the call, and both events 505 and
514 are triggered by program 500 receiving a message from
program 400 that caller P1 has requested to be transferred to
P2’s voice mail. However, if program 500’s execution is
within frame 501, a first action may be taken for a detected
event, and if program 500’s execution is within frame 510
a different action may be taken for the same detected event.
For instance, in FIG. 5 if program 500°s execution is within
frame 501 when a message is received from program 400
that caller P1 has terminated the call (i.e., event “On (AppA:
Quit)”), then program 500 ends its execution in step 506.
However, if program 500’s execution is within frame 510
when a message is received from program 400 that caller P1
has terminated the call (i.e., event “On (AppA: Quit)”), then
program 500 plays a message to called party P2 that “caller
P1 hung up” in step 520 and ends its execution in step 521.
Accordingly, in a preferred embodiment, separate, indepen-
dent frames within a program may have associated decora-
tions that define the same or different actions to be taken
upon detection of an event during execution of such frames.
Additionally, one or more frames included within a program
may not have decorations associated (or attached) with
them.

If while program 500°s execution is within frame 510,
program 500 detects that called party P2 presses the “2”
button on the telephone keypad to input the corresponding
DTMF signal (indicating a desire that caller P1 be trans-
ferred to P2’s voice mail), program 500 branches to event
“2,” thereby exiting frame 510 and advancing its execution
to step 522. Program 500 sends a message instructing
program 400 to transfer caller P1 to P2’s voice mail in step
522. Thereafter, program 500 plays a “goodbye” message to
called party P2 in step 523, and ends its execution in step
524.

On the other hand, if while program 500°s execution is
within frame 510, program 500 detects that called party P2
presses the “1” button on the telephone keypad to input the
corresponding DTMF signal (indicating a desire that caller
P1 be connected with called party P2), program 500

